Polygenic Risk Scores for COVID-19 Hospitalization in Spanish and Latin-American Populations

Silvia Diz de Almeida Genomics & Bioinformatics (CIMUS)

Centro Singular de Investigación en **Medicina Molecular** e **Enfermidades Crónicas**

Polygenic Risk Scores

Χ

Χ

Χ

Χ

Χ

Lower genetic risk 0.03 + 0.1 + -0.2 + 0.04 + -0.12

Higher genetic risk

Limitations

 Most PRS are studied on EUR individuals • Admixed samples are

excluded

Lack of diversity in GWAS studies

Data from the GWAS diversity monitor (22/01/2024)

SCOURGE Consortium

Recruited from 2020 to 2021 (pre-vaccines) +300 variables

Spanish sample

Latin-American sample

- LatAm recruiting countries: Brazil, Colombia,
 - Ecuador, Mexico, Paraguay
- Spain (LatAm origin or coherent admixed GIA)

Previous work

Cruz, R., Diz-de Almeida, S., et al (2022). Novel genes and sex differences in COVID-19 severity. Human molecular genetics, 31(22), 3789–3806. https://doi.org/10.1093/hmg/ddac132

Diz-de Almeida, S., Cruz, R., et al (2023). Novel risk loci for COVID-19 hospitalization among admixed American populations. medRxiv 2023.08.11.23293871; doi: https://doi.org/10.1101/2023.08.11.23293871

Recruited all over Spain

5.968 hospitalized cases 3.382 COVID-19+ non hospitalized

1.625 hospitalized cases 1.887 COVID-19+ non hospitalized

Ancestry distribution in Latin-American samples

Ternary plot showing the % of AFR, NAM and EUR ancestry in the LatAm sample

PC1 vs PC2 in the LatAm sample

- Development of a PRS for COVID-19 hospitalization
- Explore the PRS in relation to COVID-19 disease outcomes and risk factors
- Identification of high risk individuals

Analysis Stage I

Discovery data

HGI B2 ALL meta-analysis (without SCOURGE): Multi-Pop (MP) and EUR

Hospitalized cases in HGI (v7)

Target data

Latin-American sample Spanish sample

<u>130 PRS were tested for</u> <u>each cohort</u>

SELECT BEST PRS Bootstrap

Best PRS: PRS-CSx multi-population

Analysis Stage II

Combine samples Single ancestry-adjusted PRS N=7.594 N=5.269

Clinical utility of the PRS

Disease outcomes Modulation by comorbidities

Develop models including common risk factors (CRF)

External validation into European cohort

111 cases / 362 controls

Single ancestry-adjusted PRS: Spain + LatAm

- PRS associated pseudo-R2: 0.016
- Model's AUC: 0.86
- OR (per 1 s.d): 1.42

- PRS was associated with:
 - Asymptomatic and critical disease
 - Death 0
 - Presence of pulmonary infiltrates 0
 - Need of mechanical ventilation
 - Pulmonary thromboembolism
- Effect of PRS modulated by age

Asint.		
Enf. crit.		
Hosp.		
Infilt. pulm		
Miocardiopat		
Morte		
Trombo pulm	ı	
Trombo ven.		
Ventilación		
	_	0.5

Single ancestry-adjusted PRS: Spain + LatAm

Top 10% with 2.3-fold higher risk of hospitalization (compared to average genetic risk). Value of standardized PRS: 1.33

Modelling risk by including CRF and PRS

Model 0: Hospitalization ~ Age + Sex + Country + PRS_bin Model 1: Hospitalization ~ Age + Sex + Country + Diabetes + HT + Cardio. C + Resp. C+ obesity Model 2: Hospitalization ~ Age + Sex + Country + Diabetes + HT + Cardio. C + Resp. C + obesity + PRS_bin

- LR-test between models was significant \bullet
- Binarized PRS in model 3 had an OR of 2.23 ۲
 - Similar OR to diabetes or chronic respiratory illnesess

Clinical utility of the PRS is unclear

Prediction of 473 individuals of **European ancestry**

- AUC model $0 \rightarrow 0.859$
- AUC model $1 \rightarrow 0.869$
- AUC model $2 \rightarrow 0.875$

Increase diversity in genetic studies and do not exclude admixed samples.

 PRS are not a tool by themselves and should be assessed alongside common risk factors.

 PRS for some outcomes/traits might not worth the cost in comparison to other risk factors.

Thank you for listening!